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ABSTRACT
Planning how to interact against bounded memory and un-
bounded memory learning opponents needs different treat-
ment. Thus far, however, work in this area has shown how to
design plans against bounded memory learning opponents,
but no work has dealt with the unbounded memory case.
This paper tackles this gap. In particular, we frame this as
a planning problem using the framework of repeated matrix
games, where the planner’s objective is to compute the best
exploiting sequence of actions against a learning opponent.
The particular class of opponent we study uses a fictitious
play process to update her beliefs, but the analysis general-
izes to many forms of Bayesian learning agents.

Our analysis is inspired by Banerjee and Peng’s AIM frame-
work, which works for planning and learning against bounded
memory opponents (e.g an adaptive player). Building on
this, we show how an unbounded memory opponent (specif-
ically a fictitious player) can also be modelled as a finite
MDP and present a new efficient algorithm that can find
a way to exploit the opponent by computing in polynomial
time a sequence of play that can obtain a higher average re-
ward than those obtained by playing a game theoretic (Nash
or correlated) equilibrium.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov Processes; I.2.4 [Computing Methodolo-
gies]: Artificial Intelligence—Knowledge Representation For-
malisms and Methods

General Terms
Algorithms, Theory, Economics

Keywords
repeated games, MDPs, fictitious play

1. INTRODUCTION
Imagine a multiagent system (MAS) where each agent is
motivated by economic incentives (they are utility maximiz-
ers) and where each agent’s actions influences the utilities of
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each other. The mathematical framework that studies such
strategic interaction is game theory, and the usual solution
concept is the Nash equilibrium [6]. However, there are sit-
uations where the agents do not know their own and their
partners’ utility functions a priori, and under such uncer-
tainty they are unable to compute a strategy of play that
is part of a Nash equilibrium profile. Typically, an agent
can tackle such uncertainty either by directly learning the
best way to map states to actions (e.g. using a multiagent
extension of Q-learning [12]) or by creating a model (belief)
of her opponents1 and computing a best response to those
beliefs (such as fictitious play (FP) [3]). During the past
decade, researchers have intensively studied the fundamen-
tal challenges of both these mutiagent learning (MAL) sys-
tems. However, as recently pointed out, “it is a fact that in
the existing literature there are no general natural dynam-
ics leading to Nash equilibria” [7]. Nevertheless, this fact
only holds for self-play interactions (where all the agents
use copies of the same algorithm). We believe that such
view is not so natural at all, but there are almost no stud-
ies of the implications that off-self-play interactions might
have. Specifically we are interested if adding one or more
clever2 agents to the MAS can lead the system to specific
equilibrium points.

Given this background, here we study the situation where
one clever agent interacts with one of those “general nat-
ural dynamics” that Sergiu Hart points out (specifically, a
fictitious player). More formally, we study how should this
clever agent plan a strategy that leads to stable equilibrium
points, such as Nash or correlated. Our rationale for do-
ing so is that we believe we can obtain new insights into
well-known, yet unsolvable problems from this perspective.
For example, the question of how to coordinate activities of
multiple learning agents on global shared resources without
leading to “tragedy of the commons” is still open to discus-
sion [10]. However, as we will illustrate later in this paper,
classic MAL techniques that lead to “tragedy of the com-
mons” without a system level intervention (such as modify-
ing utility functions of the agents) can be easily solved with
the intervention of a clever agent.

In more detail, the study of clever against non-clever agents
that we focus on falls into the general category of asymmet-

1We use the term opponent to refer to an agent’s interaction
partners. A teammate when their goals are aligned or a real
opponent when their goals are opposed.
2In this context, we define a clever agent as one that uses
the opponent’s utility function to reason what incentivises
her.
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ric interactions, an area of research that is rapidly emerging
in multiagent systems due to its power to provide solutions
to more realistic situations. Specifically, Chang and Kael-
bling [5] presented a table-like classification of asymmetric
multiagent learning algorithms based on their level of so-
phistication (i.e. the learner’s usage of history and her be-
liefs about the ability of the opponent to use their history).
Although this work is somewhat related to our view, they
tackle a different problem, namely that of asymmetric learn-
ing, thus, they do not deal with the problem of how a planner
should design an exploiting strategy. Planning against other
learning agents is not entirely new, however the bulk of work
aims to design a leader agent that can persuade a follower3

agent to follow it. Probably one of the first thoughts on this
matter is that of Littman and Stone [9], whose work shows
experimental results on how two hard-coded strategies can
lead Q-learning (who belong to the class of model free best
response learners) opponents through different equilibrium
points in bimatrix repeated games. Our work is inspired by
their results, however, they differ in that we present an al-
gorithmic way to construct exploiting plans for any general-
sum game, instead of good hard-wired strategies for spe-
cific games. Other closely related work is that of Babes
et al. [1], who (as we do) have studied information asym-
metry, but focus on how to use this information to shape
rewards of the informed agent (a Q-learner) in such a way
that it acts as a leader against an uninformed Q-learning
opponent. Apart from these experimental studies, the first
principled approach in asymmetric interactions is Banerjee
and Peng’s AIM framework [2], which works for planning
and learning against bounded memory opponents (e.g an
adaptive player). We will detail their results later in this
paper, given that our solution makes extensive use of their
framework. In [4], Chakraborty and Stone studied the sit-
uation where the planner knows that the opponent belongs
to the bounded memory class (which falls into Banerjee and
Peng’s framework) but does not know her exact memory
length. Because of that fact, the planer constructs a plan
against the opponent she believes she is playing against, in-
curring in the classic exploration/exploitation tradeoff.

Against this background, we identify a clear gap in the lit-
erature, where no study has focused on computing exploiting
plans against unbounded memory opponents. The planner
we design strategically uses her information to guide the
learning process of the opponent to her advantage. We show
how an unbounded memory opponent (specifically a ficti-
tious player) can also be modelled as a finite MDP so that
the planner can build exploiting plans against them. We fo-
cus specifically on fictitious players because it is one of the
most used learning techniques beside being closely related to
the class that uses Bayesian inference to update their beliefs,
a class that is commonly used among the multiagent learning
community [5, 10, 13]. Specifically, we present theoretical
results for planning against FP opponents in general-sum
two action two player games, and present an algorithm that
builds a FP response model whose solution finds a strategy
of play that can probably exploit the opponent (depending
on the game), but will never do worst than the Nash equi-
librium of the game. The intuition behind the result goes as
follows. The resulting plan finds the best way to exploit one
major flaw of fictitious players (and many other Bayesian

3This class of games are called Stackelberg games [6] in the
literature.

learning agents for that matter) and is based on the fact
that their strategy switches are guided by their discontinu-
ous best response function.

In the next section we present relevant background ma-
terial on game theory and learning in games. In section
3 we analyze Bayesian inference adaptive opponents with
bounded and unbounded memories. Section 4 frames the
problem as a planning problem and develops a compact
MDP response model of the opponent. Section 5 presents
the algorithmic interpretation of our previous analysis and
the last section concludes.

2. BACKGROUND AND DEFINITIONS
Throughout this work we consider two players (A and B),
that face each other and repeatedly play a bimatrix game.

Definition 1. A bimatrix game is a two player simultaneous-
move game defined by the tuple Γ = 〈A,B, RA, RB〉, where

• A and B are the set of possible actions for player A
and B respectively.

• Ri is the reward matrix of size |A|× |B| for each agent
i ∈ {A, B}, where the payoff to the ith agent for the
joint action (a, b) ∈ A×B is given by the entry Ri(a, b),
∀(a, b) ∈ A× B, ∀i ∈ {A,B}.

In our setting, a bimatrix game is called the stage game
and it is the building block of a repeated game. At stage
one, each agent simultaneously chooses an action and a pair
(a, b) ∈ A × B is formed, announced to all agents and each
agent i receives a reward from Ri. The process then repeats
for all following stages. We assume perfect information, so
after each successive stage, agents can observe the action
played by her counterpart. The type of asymmetry we dis-
cuss in this work comes from the fact that only the planner
(agent A) has complete information (i.e. agent A knows the
payoffs and strategies available to the opponent) whilst the
opponent agent B, not having complete information, builds
an assessment about agent A’s way of playing by repeated
interactions.

2.1 Beliefs
Our objective is to find the best exploiting strategy for agent
A against an opponent that can build an assessment about
agent A’s way of playing. In this context, building an as-
sessment means learning a model of the opponent’s strategy,
which is also known in the literature as building beliefs. For-
mally, agent B builds her beliefs as probability measures over
agent A’s action set (so called mixed strategies).

Definition 2. Let Δ(X) be the set of probability measures
over a finite set X, a mixed strategy π is a member of
Δ(X). Particularly, for the finite sets (A,B), a strategy
profile (πi)i∈{A,B} of mixed strategies induces a probability
distribution over the set A× B.

Definition 3. An opponent’s belief ψ ∈ Δ(A) is a vector
of size |A|, whose elements a ∈ A are expressed as the ratio,

ψt(a) =
ct(a)P

a′∈A ct(a′)
(1)

where ct(a) are counts of observations of agent A’s action
a ∈ A up to time t. At each stage t, action counts are
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updated using the following update rule,

ct(a) = ct−1(a) + I(a, at) (2)

where I(x, y) is an indicator function that equals 1 if x = y
and 0 otherwise. Using her beliefs ψt, agent B is able to
compute her action value expected utility of an action
choice b ∈ B by,

QB(b, ψt) =
X
a∈A

ψt(a)RB(b, a) (3)

We can now define how an agent chooses her actions based
on their expected utilities as just defined.

2.2 Best reply and fictitious play
Normally, there is no optimal strategy that is independent of
the other agent’s strategy (i.e. optimality in multiagent in-
teractions usually depends on the joint action of agents, and
not just the single agent action). However, what does exist
are opponent-dependent solutions, called best response.

Definition 4. The best response of the opponent is a
function BR : Δ(A) → B that maps probability measures
on the set A to a the subset of B that maximizes the expected
utility, i.e.,

BR(ψt) = {b ∈ B : arg max
b∈B

Q(b, ψt)} (4)

When the opponent’s strategy choice uses a BR function
that is based on her counterpart’s accumulated mixed strat-
egy, i.e. on her beliefs as defined in (1), the opponent is said
to use a fictitious play strategy.

Definition 5. A fictitious player opponent is defined by
a function ρ : Δ(A) → Δ(B),

ρ(ψt) ∈ Δ(BR(ψt))

that is, by the rule it uses for choosing from amongst the set
BR(ψt). Without loss of generality, throughout this work we
use a uniform probability distribution over the set BR(ψt)
as our running example.

3. ADAPTIVE OPPONENTS
Fictitious play is a particular instance of a more general class
of algorithms called Adaptive Play (AP) [13]. Specifically,
an adaptive player has a finite memory of size 1 ≤ M ≤ ∞
to store the history of past plays and uses this memory to
compute her beliefs. Note that fictitious play is therefore
the special case where M = ∞ and all other agents on the
remaining interval M < ∞ are bounded memory opponents.
We will start by defining a model for planning against the
class M < ∞. This is because its finite memory will allow
us to build a finite model to plan against it, which then
motivates our approach in the infinite case. We will then
move to our main contribution and define a model whose
solution is the best exploiting plan of play against an infinite
memory opponent —a fictitious player.

3.1 Bounded memory opponents
An adaptive player opponent can be thought of as a finite
automata that takes the M most recent actions of the plan-
ner and uses this history to compute her BR. Therefore, the
planner’s history of play defines the state of the opponent.
Indeed, Banerjee and Peng [2] took this observation on a
model they called the Adversary Induced MDP (AIM), for

which the standard artillery to solve (PO)MDPs (such as
dynamic programming)[11] can be reused.

In the context of repeated games, bounded memory learn-
ers (those with M < ∞) use M of her opponent’s past ac-
tions to compute her beliefs ψM . At time t+1, the opponent
observes the planner’s last action at and updates her beliefs

with ψM (at) = cM (at)P
a′∈A

cM (a′)
, where cM (a) are counts of

observations for the planner’s action a ∈ A over the last
M stages. The state information that the bounded mem-
ory learner uses to choose her strategy is on the vector ψM ,
which is a function of the past M actions of the planner,
i.e. (at, . . . , at−M ) ∈ AM and chooses her strategy based
on that information. Note that the planner, by just keep-
ing track of ψM (her own past moves) can therefore infer
the strategy of the opponent. Recall that the opponent’s
function ρ(·) returns a stationary strategy that mixes only
in the case of ties and is deterministic if the set BR(ψM) is
a singleton. The current state ψM , the opponent’s inferred
strategy ρ(ψM ) and the planner’s action a induces an MDP.

Definition 6. An adversary induced Markov decision
process (AIM) is a tuple 〈A, Ψ, T, U〉 where,

• A is the action space of the planner.

• Ψ = {ψM :
P

a∈A ψM (a) = 1, ψM (a) ∈ [0, 1] ∀a ∈ A}
is the state space.

• T : Ψ × A → Δ(Ψ) is the state-transition function
that maps actions and states to probability measures
on future states.

• U : Ψ ×A → R is the function

U(ψM , a) =
X
b∈B

ρ(ψM , b)RA(a, b)

that maps state ψM ∈ Δ(A) and action a ∈ A to
a real number that represents the planner’s expected
reward. Here, ρ(·, b) ∈ [0, 1], subject to the constraint
that

P
b′∈B ρ(·, b′) = 1.

We’ll use the following example to motivate the use of
the AIM framework for bounded memory opponents and
why the framework is unfeasible for the unbounded memory
case.

3.2 Running example
Throughout this work we have made it clear that the oppo-
nent that the planner faces belongs to the class of AP (be
that a fictitious player or a bounded memory opponent) and
we are interested in computing the best exploiting plan for
agent A against this class of opponents. Also, as already
stated, the bimatrix is given to the planner and this agent
can therefore commit to a strategy before stage zero of the
game. Thus, the planner becomes the leader and the oppo-
nent (called the follower) optimizes selfishly her own reward
considering the strategy chosen by the leader. Specifically,
our leader (the planner) has complete information as op-
posed to her opponent and can therefore commit to a strat-
egy (after the planning stage) so that the learning opponent,
has no choice but to optimize over the already fixed strategy
of the planner.

Consider the bimatrix game Γ0 shown in Figure 1(a), pay-
offs for the row agent (the planner) are the first entry for each
strategy profile and second entry for the column agent (the
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Γ0 1 2
1 −1, 1 2,−2
2 2,−2 −2, 2

(a)

12

11 22

21

2(2)
1(−1)

1(2)

2(−1)
2(−2)

1(2)

1(2)2(−2)

(b)

Figure 1: A normal form zero-sum game. 1(a) the
bimatrix, 1(b) the AIM of Γ0 for an M = 2 memory
opponent.

learning opponent). This game has a unique mixed strategy
Nash equilibrium, with strategy profile (4/7, 4/7). However,
as we will discuss later on, the solution found by the AIM
model is off the game theoretic NE.

When the planner faces a bounded memory opponent and
the former happens to know the later’s memory size M , the
planner faces an AIM. Building on this, Figure 1(b) shows
the AIM induced by the zero-sum game Γ0 and an opponent
that keeps the two last actions of the planner. In the figure,
states are nodes and are labelled as at−1, at, where at−1, at

are the actions taken by agent A in the two previous stages,
edges represent transitions between states and are determin-
istically controlled by the actions of agent A labelled a1 or a2

along with the expected utility U(ψ2
t , at+1). Optimal strate-

gies (plans) π to an AIM can be found using any flavour of
dynamic programming (e.g. value iteration or policy itera-
tion) [11] and need not be unique, i.e. there might be several
different paths of play that achieve the same expected utility.
For example, an optimal strategy to the AIM of Figure 1(b)
is π∗ = (π(11) = 1, π(12) = 1, , π(21) = 1, π(22) = 1), i.e.
a period 3 strategy that cycles through states 11, 12, 21 and
achieves the accumulated long term expected reward of 2
(under a gain optimality criterion, which will be explained
thoroughly in the following section). As can been seen, plan-
ning against bounded memory opponents when the planner
knows the AIM is just a matter of solving the induced AIM,
and a basic Q-learning algorithm could learn the AIM if it
is not known beforehand.

The cardinality of ht = (at, . . . , at−M ) ∈ ×k≤MAk for
two action games, A = {1, 2}, grows exponentially on M ,PM

k=0

`
M

k

´
= 2M . FP belongs to the case where M grows

as games are played and in the limit, the cardinality of ht

when t → ∞ is limM→∞ 2M = ∞. There are 2M different
histories that a M -bounded memory opponent can experi-
ence on a 2-action game. Therefore, such learners can only
experience a finite number of different histories, a fact that
guarantees a finite MDP representation. However, note that
the induced AIM incurs an exponential growth in the size
of the memory length M . This representation is therefore
infeasible for unbounded memory opponents such as ficti-
tious players. Thus, in what follows we present our main
contribution, a way to succinctly represent an infinite mem-
ory opponent using a compact representation model whose
solution obtains the optimal plan of play for agent A and
whose computation is polynomial in the size of the problem.

3.3 Unbounded memory opponents
As pointed out, the MDP that a M -bounded memory oppo-

nent induces has a finite state representation. However, an
unbounded memory opponent (such as a fictitious player)
can experience an infinite number of different histories. Al-
though we cannot expect to find an optimal plan against
FP opponents by directly solving the induced AIM, they
are still vulnerable to exploitation. This is because their
BR(·) function is discontinuous in its domain interval [0, 1].

Proposition 1. The discontinuities of the BR(·) func-
tion (4) in its domain interval [0, 1] can be exploited by a
clever adversary.

This proposition is an obvious one: it is a well known fact
that FP is not universally consistent [6] and therefore cannot
guarantee itself a “security level”4. Even if this fact is well
known, to date there has been no work that designs such
an attack plan. It is important to remark that the study
we present here for planing against unbounded memory op-
ponents is feasible only for two player, two action games.
This is however not very limiting, and it eases the analy-
sis. As we conclude in this paper, we will state how this
insight can be used to generate planning strategies in more
general settings. For two action games, an agent’s belief
can be expressed with one variable, so with a slight abuse
in notation, in what follows we will refer to the probability
of choosing action 1, ψt(1), simply as ψt (leaving 1 − ψt as
the probability for action 2). We can now present where the
discontinuities of the BR(·) function exist.

3.3.1 Indifference points
Equation (3) expresses the opponent’s expected utility. For
any action b ∈ {1, 2}, this expectation is linear in the proba-
bilities ψt, Q(b, ψt) = ψtRB(b, 1) + (1−ψt)RB(b, 2) and the
solution to the equation,

ψtRB(1,1)+(1−ψt)RB(1,2)=ψtRB(2,1)+(1−ψt)RB(2,2) (5)

finds the value ψ∗ where expectations are equal for both
actions.

Definition 7. The point w ∈ [0, 1] is called the opponent’s
indifference point and it exists only if the solution to Eq.
(5) exists in the interval [0, 1], i.e.

w =

(
ψ∗, if ψ∗ ∈ [0, 1]

∅, else
(6)

In the zero-sum game Γ0, there exists a point w where the
opponent is indifferent between both actions. In Figure 2(a)
we can see the opponent’s expected utility against her beliefs
for both actions, and w is the point where the lines cross.
This point is the most interesting because it is exactly at this
point where the opponent’s BR(·) has a discontinuity (see
Fig. 2(b)). Notice that if w does not exist, it means that one
action (weakly) dominates the other and will be chosen de-
terministically and independently of what the planner does.
With the aid of the expected utility diagrams (Fig. 2(a)),
we can construct a FP’s best response diagram (Fig. 2(b)),
which shows how the opponent’s best reply changes to the
empirical distribution of play ψ. In the figure we can see that

4An agent’s security level is the minimum payoff that it
can guarantee herself even against the worst opponent. The
term is closely related to the use of randomized maximin
strategies in the theory of two-player zero-sum games.
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Figure 2: Analysis on the zero-sum game Γ0. 2(a) opponent’s expected utility for each action as function of
her beliefs ψ, 2(b) opponent’s discontinuous BR(ψ), 2(c) planner’s expected reward as a function of her mixed
strategy.

the discontinuity happens at the indifference point w = 4/7,
where,

BR(ψ) =

8><
>:

1, for 0 < ψ < w

2, for w < ψ < 1

{1, 2} for ψ = w

As stated in Definition 5, ρ(ψ) = 1/2 for ψ = w (mean-
ing that both actions are a best response to that empirical
frequency) and this mixes each action with a uniform prob-
ability (1/2 each). Now that the point where the disconti-
nuities has been characterized, in what follows we show how
to exploit such discontinuities.

3.3.2 Exploiting a fictitious player
Infinite memory opponents, such as FP, ignore sequences of
play (paths) and assume that their opponents’ play corre-
sponds to i.i.d. draws from a (probably fixed) distribution.
Because of this fact, a fictitious player is not able to detect
an opponent’s persistence of cycles on a path of play.

Definition 8. A path of play of length k for agent A
is identified by the sequence of moves ak = (a1, . . . , ak) ∈
×i≤kAi and a cycle of period k can therefore be associated
with its path ak. We also refer to such a path of play as a
behavioural strategy πk, where

Πk = {π ∈ ×i≤kAi : k ∈ Z \ {0}}.

Now, the fact that a FP opponent assumes the planner’s
play uses i.i.d. draws can be exploited (in some games) by a
clever planner by building cycles whose empirical joint dis-
tribution of play is correlated. Given this, the remainder
of this section will be devoted to how the planner can con-
struct paths of play where such correlation can be exploited
for her own benefit. First, however, note that a successful
exploitation path builds on the idea that the opponent will
not detect correlations of the joint strategy profile (i.e. the
empirical joint distribution of play) and such correlations
are only present when agents are playing mixed strategies.

In game Γ0, the opponent’s indifferent point w is found
when the mixed strategy ψ∗ = 4/7 is played. At w, the
opponent’s strategy is ρ(4/7) = 1/2, yielding a utility in
expectation of QA(1, 1/2) = 1

2
(RA(1, 1) + RA(1, 2)) = 1

for action 1 and QA(2, 1/2) = 1
2
(RA(2, 1) + RA(2, 2)) = 0

for action 2. Moving right from w, as can be seen in Fig-
ure 2(b), ρ(ψ > 1/2) = 0 (meaning that action 2 is played
deterministically) and expectations are QA(1, 2) = 3 and

QA(2, 2) = 5 and left from w, ρ(ψ < 1/2) = 1 and expecta-
tions are QA(1, 1) = 1 and QA(2, 1) = 2. Figure 2(c) plots
the planner’s expected utility as a function of her mixed
strategy ψ. Now, imagine the situation where at some time
t the planner knows that the opponent’s beliefs are exactly
ψt = 4/7 (where the mixed strategy ρ(4/7) = 1/2 is played
by the opponent). If action 1 is played 4 times in the next
7 stages, the opponent’s belief will return to be ψt+7 = 4/7.
More generally, the solution to Eq. (5) yields the indiffer-
ence point as a rational number w = r/k (if it exists), and if
at some time ψt = r/k and action 1 is played r times in the
following k stages, ψt = ψt+k. This walk through intuition
of a planning strategy that plays the empirical frequency w
will be the focus of analysis in the following section. In par-
ticular, this section left open two natural questions: (i) when
w exists, should the planner design a strategy that plays the
empirical frequency w?, (ii) if the empirical frequency w is
to be played, at what times should the planner play each ac-
tion? In the next section we give answers to these questions
and we will show how to compute a planning strategy that
achieves the empirical frequency w, but uses a path of play
that correlates the BR(·) discontinuities in her favour.

4. PLANNING AGAINST FP
Framing our problem as a planning problem for repeated
games means considering the problem of computing a strat-
egy π, in the form of a path of play, that is the best exploit-
ing strategy against a FP opponent for a given game. This
form of planning stands aside from the classic AI planning
paradigm in that there exists no initial and end state. The
exploiting strategy π∗ will therefore prescribe a path of play
that will repeat itself infinitely.

In many games (those where ∃w), the optimal way of ex-
ploiting a FP is by constructing a strategy that is cyclic and
repeats itself every k steps forever. For example, the solution
to the MDP induced by the game Γ0 and a bounded mem-
ory opponent is still a cyclic strategy π with period k = 7
(more on optimal strategies will follow in next section). As
stated in Section 3.3, the MDP that an unbounded memory
opponent induces has an unbounded state representation, so
there is no hope of solving such an induced MDP. However,
as we will show later on, we can restricts the search space
from an uncountable number of strategies to only those of
length k whose action 1 is played exactly r times. The set
of such k-length strategies belong to the finite set

`
k

r

´
, i.e.
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the set of k-combinations with r elements.
Now we show how to use these results to construct a com-

pact and finite MDP for planning against a FP. Specifically,
using the result from the previous section, we can justify the
existence of a finite representation of the planning problem
at hand. In fact, the representation that we present below
is compact, as the search for an optimal strategy is made
only on the set

`
k

r

´
. Our main result will be detail below,

but the intuition to construct a finite representation is to re-
strict the planner’s strategy search only to those that are on
the neighbourhood of w. Around this point, the opponent’s
current state ψt, inferred strategy ρ(ψt), and the planner’s
action at+1 will induce a finite MDP.

4.1 States, Rewards and Transitions
Just as shown in section 3.1, the AIM representation of a FP
yields an infinite graph because the domain of the state vari-
able, although discrete in the [0, 1] interval, is non-atomic.
However, we can restrict the opponent’s state variable do-
main to the atomic discrete set

S = {s ∈ Z×Z : s = (x, y); x, y ∈ Z, 0 ≤ x < r, 0 ≤ y < k−r}

where the pair (x, y) represents how many times action 1
and 2 have been played (respectively), and their bounds r, k
are taken from the solution to Eq. (5), i.e.

r = |RB(2, 2) − RB(1, 2)|

k = | (RB(1, 1) − RB(2, 1)) + (RB(2, 2) − RB(1, 2)) |

In more detail, the strategy πk is recurrent and with a
path of play ak. This strategy defines the state space of
the opponent (and hence also the planner’s as in the AIM
model), and this state space S is defined by the pair (x, y)
that counts the number of plays of each action. The state
s0 = (0, 0) is called the initial state. Because the pair (x, y)
is bounded by r, k, the size of the state space |S| = |r +
1| × |k− r + 1| is finite and countable. In this context, state
transitions are deterministic and controlled by the action
count updates from Eq. (2). Formally,

T ((x, y), a, (x + I(x, a), y + I(y, a)) = 1 (7)

conditional on :

0 ≤ x < r

0 ≤ y < k − r

where I(i, j) is an indicator function that equals 1 if i = j
and 0 otherwise. If (x = r)∧ (y = k− r−1) or (x = r−1)∧
(y = k − r) any action transitions back to the initial state
(i.e. T ((x, y), a, (0, 0)) = 1). Using the opponent’s current
state, st, the planner can infer the opponent’s strategy ρ(st).
The instantaneous reward obtained from playing an action
in a given state is the expected utility

U(st, a) =
X
b∈B

ρ(st, b)RA(a, b) (8)

just as with the AIM model.
We call the tuple 〈A, S, T, U〉 a fictitious play induced

Markov decision process (FP-MDP). In essence, a FP-
MDP is closely related to an AIM with the difference that
swaps the opponent’s state variable from the non-atomic set
Ψ to the atomic and countable set S.

Some definitions and lemmas will be useful for defining
optimal policies in FP-MDPs. A strategy π ∈ Π defines a

homogeneous Markov chain {Xπ
t } with transition probabil-

ities P(Xπ
t+1 = j|Xπ

t = i) = pij(π(i))5.

Definition 9. The Unichain condition states that for
every strategy π ∈ Π, the resulting Markov chain {Xπ

t } has
a single ergodic class. If all states in a resulting Markov
chain {Xπ

t } form an ergodic class the chain {Xπ
t } is termed

irreducible.

Proposition 2. On any FP-MDP, for all s ∈ S, s = s0,
every move (s, a) transitions to a state closer to s0.

Proof. Take any state st = (x, y), under function T ,
st+1 = (x + 1, y) or st+1 = (x, y + 1) unless (x = r) ∧ (y =
k − r − 1) or (x = r − 1) ∧ (y = k − r), which transitions
directly to s0.

Claim 1. The set of strategies of any FP-MDP is Πk =`
k

r

´
.

Proof. By proposition 2, all moves transition to a state
closer to s0, the longest path of play to get to s0 is from itself.
One step transitions back to s0 are on states (r, k−r−1), (r−
1, k − r). Because all state transitions are deterministic,
there are exactly r action 1 moves and k − r action 2 moves
to get back to state s0 with probability one, which is exactly
the set

`
k

r

´
.

The stable distribution p(π(·)), of any strategy π ∈ Π, de-
fines the restriction Sπ ⊆ S to the set Sπ = {j ∈ S :
pij(π(i)) > 0}, i.e. the states with positive transition prob-
ability under strategy π. Let pn

s,s(π) denote the probability
of reaching state s from itself in n steps using strategy π
and let T (s) := {t ≥ 1 : pt

ss > 0}. The period of a state s
under strategy π is the greatest common divisor of all n for
which pn

s,s(π) > 0.

Claim 2. Every state s ∈ Sπ shares the same period.

Proof. The proof is close to that found in [8]. Fix two
states x and y. There exists non-negative integers r and l
such that pr

xy > 0 and pl
xy > 0. Letting m = r + l, we have

m ∈ T (x)∩T (y) and T (x) ⊆ T (y)−m, and gcdT (y) divides
all elements of T (x). Therefore, gcdT (y) ≤ gcdT (x), and
by a parallel argument gcdT (x) ≤ gcdT (y), which concludes
the proof.

Lemma 1. Every FP-MDP satisfies the unichain condi-
tion.

Proof. A MDP is unichain if for every π ∈ Π, the re-
sulting Markov chain {Xπ

t } is irreducible. By claim 2, all
states in the Markov chain {Xπ

t } share the same period,
which make the chain {Xπ

t } irreducible. By definition, if
every Markov chain is irreducible, the MDP is unichain.

Now that the properties of an FP-MDP have been intro-
duced, what is left is to identify what is the proper way
to evaluate a strategy so that an optimal strategy can be
defined.

4.2 Optimal Strategies
The traditional AI planning paradigm requires an agent to
derive a sequence of actions that leads from an initial state

5Due to the lack of space, this paper does not go into full
detail on Markov chains, we refer to [11] for such material.

1078



to a goal state. For that case, an optimal strategy plan can
be described as the one that derives a sequence of actions
that maximizes the sum of discounted rewards. In the con-
text of this work, an optimal strategy plan yields a path of
play ak that repeats forever. The sum that maximizes the
discounted rewards is not well suited as an optimality crite-
rion for the task at hand, this is because the criterion cannot
handle infinite horizon tasks where there are no absorbing
goal states. A more natural long-term measure of optimality
exists for such cyclical tasks which is based on maximizing
the average reward per action. In particular, the average
reward gπ(s) associated with a strategy π at a state s is
defined as,

gπ(s) = lim
N→∞

E
“PN−1

t=0 Rπ
t (s)

”
N

We say that a strategy π∗ is gain optimal whenever,

gπ∗

(s) ≥ gπ(s) for each s ∈ S and all π ∈ Π

Given the solution for the optimal strategy is on the set
of strategies of k-combinations with r elements, i.e.

`
k

r

´
, and

this finite set defines the state space, the set S is ergodic and
defines a set of recurrent states that all communicate with
each other.

The fact that every FP-MDP is unichain has tremendous
implications for in the design of the average reward algo-
rithm. This is because the average reward of any policy is
state independent for states in the ergodic set S. That is,
for all s, s′ ∈ S,

gπ(s) = gπ(s′) = gπ. (9)

This comes from the fact that states in the recurrent class
will be visited forever under the periodic strategy, therefore,
the expected average reward cannot differ across the states.

5. ALGORITHM DESCRIPTION
The complete algorithm that computes and plays the best
exploiting strategy for any two action general sum game
consists of two major routines: (i) the initialization phase
that identifies the characteristics of the game being played
and outputs the best exploiting strategy π∗ and (ii) the
playing phase that actually plays the game according to the
prescribed strategy.

In more detail, the initialization phase uses Subroutine 1.
This takes as argument a game Γ to compute the indifference
point w of a FP and, conditional on the resulting w, designs
a strategy tailored for that game. At its heart lies the call to
the most interesting subroutine, i.e. constructFP-MDP(r,k).

When w ≥ 1 or w ≤ 0, the opponent has no indiffer-
ence point inside the feasible probability distribution, which
means that there exists a dominant pure strategy. The later
comparisons between A,B and C, D identify which opponent
strategy profile achieves her preferred point and uses the
best reply to the opponent’s dominant strategy as the action
to be played forever. Note that this assignment is π = π1,
i.e. it produces a path of play of length 1. When 0 < w < 1
there exists an indifference point w inside the feasible prob-
ability distribution. This case is the most interesting be-
cause the optimal planner strategy need not be a repeated
pure strategy π1 but something more sophisticated such as
πk. This case calls the subroutine constructFP-MDP(r,k),

Subroutine 1 Initialization(Γ)

Let RB(1, 1) = A,RB(2, 1) = B, RB(1, 2) = C, RB(2, 2) = D
w ← D−C

(D−C)+(A−B)

if w ≥ 1 then
if C ≥ D then

π ← BRA(1)
else

π ← BRA(2)
end if

else if w ≤ 0 then
if A ≥ B then

π ← BRA(1)
else

π ← BRA(2)
end if

else if 0 < w < 1 then
FP-MDP ← constructFP-MDP(r,k)
π ← solve(FP-MDP)

end if
return π

which takes as argument the indifference point as a ratio-
nal number and constructs its FP-MDP. More specifically,
it constructs the transition function T : S × A× S → [0, 1]
that maps current state and action pairs (st, at) to proba-
bility measures over future states st+1.

Subroutine 2 constructFP-MDP(r, k)

Initialize T to 0 ∀s, s′ ∈ S ∀a ∈ A
Initialize U to 0 ∀s ∈ S ∀a ∈ A
for all i such that 0 ≤ i ≤ k do

for all j such that 0 ≤ j ≤ n − k do
fill the matrix with deterministic transitions of the
form:
T ((i, j), 1, (i + 1, j)) = 1
T ((i, j), 2, (i, j + 1)) = 1
U((i, j), a) =

P
b∈B ρ(ψ(i, j), b)r(a, b)

end for
end for
return (T, U)

Notice how state transitions are controlled deterministically
by the planner’s actions (second argument in T (·, a, ·)). It
also constructs the instantaneous reward function U : S ×
A → R, where ψ(i, j) = i/j is a rational number in the
interval [0, 1].

The last part of the subroutine Initialization(Γ), when
0 < w < 1, calls the subroutine solve(FP-MDP) which takes
as argument the previously constructed FP-MDP. Given
that FP-MDP is unichain, it can be solved by the unichain
policy iteration algorithm presented in [11]. The output of
Subroutine 2, which is the strategy πk that the unichain pol-
icy iteration algorithm finds is a gain optimal strategy π∗ of
length k if ∃w or length 1 otherwise.

The routine P lay(πk, w) is the main routine and is called
after the initialization phase. It assumes that the current
state is the indifference point w = (r, k) and plays the
prescribed strategy πk starting from the indifferent point
state. Here, the if statement checks if the belief state s
is consistent with BR(s), and if not, it calls the subroutine
find w(b, w) which will return only after the opponent’s be-
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Subroutine 3 Play(πk, w)

s ← (r, k), t ← 1
while game is not over do

r ← t mod k − 1
play a = πk(t)
observe the opponent’s action b
if b /∈ BRB(s) and w = ∅ then

find w(b, w)
end if
t ← t + 1
update s depending on action a

end while

lief ψ is in the indifference point w. More formally, the sub-
routine computes a path of play by taking its first argument
b. If b ∈ BRB(ψ < w) it will play action 2 until there exists
a switch bt−1 = bt. At t it’s not clear if ψt = w or ψt−1 = w.
At time t + 1, the planner, by switching from action 1 to
action 2 (starting from action 1) can detect that some of the
two responses is actually an stochastic response, and at that
time, the subroutine returns.

Claim 3. The subroutine find w(b, w) computes a path
of play such that at some time t, the opponent is indifferent
between both actions, i.e. ψt = w

Proof. Without loss of generality, lets assume find w(1t, w).
By that call, we know three things, that 1t /∈ BRB(s),
2t ∈ BRB(s) and w = ∅. Furthermore, let RB(1, 1) = A,
RB(2, 1) = B, RB(1, 2) = C, RB(2, 2) = D. We know that:
1t ∈ {arg maxb∈B QB(b, ψt)} where ψt is the opponent’s real
belief and QB(1, ψt) = ψtA+(1−ψt)C; QB(2, ψt) = ψtB +
(1 − ψt)D, therefore, ψt > D−C

(A−B)+(D−C)
= w. If the plan-

ner plays action 2 enough times, an opponent switch from
action 1 to action 2 will happen with probability one. Call
the time when the switch happens t+x, at that time, one of
the following is true: ψt+x−1 = w ∧ ψt+x < w or ψt+x−1 >
w ∧ ψt+x = w the strategy π = (1t+x+1, 2t+x+2, . . . ), i.e.
that switches from action 1 to action 2 (starting from ac-
tion 1) will identify which of the two previous statements
is true when the statement: bt+z = bt+z−2 is true. At that
time z the subroutine returns and ψz = w. The analogous
reasoning apply when find w(2t, w).

6. CONCLUSIONS
Our study is on computing planning strategies for an agent
that faces a fictitious player opponent. Such fictitious play-
ers disregard all information about the preferences of their
opponent and our findings describe ways to exploit such a
narrow view in different settings (i.e. common interest, op-
posed interest and mixed interest games). As opposed to a
usual game theoretic study where the focus is on symmet-
ric interactions (copies of the same fully rational player), we
study optimal exploiting strategies, classifying optimality in
terms of long term average utilities.

Our analysis on the discontinuities of the best response
function show how these can be exploited by using correlated
switches. As a result of this analysis we construct a MDP
response model of the opponent, named FP-MDP, that is
compact and solvable in polytime. We then present an algo-
rithmic approach that constructs the induced FP-MDP (in
case needed), solves it and plays its prescribed strategy in

every stage of the repeated game. Our algorithm works for
two player, two action games. Now, although two action
games might seem somewhat limited in scope, they repre-
sent an important class of games in literature and this allow
us to conduct the analysis without losing scope. Extending
this work to more than two actions would involve working in
n-dimensional simplices rather than the 1-dimensional sim-
plex we treat in this work. Apart from this, our analysis
should be easily extensible to such settings. Furthermore,
our algorithm can readily be used to construct plans against
multiple homogeneous opponents. To do so, care should be
taken in the construction of the joint opponent best response
function, but everything else remaining unaltered.

To conclude, our results present a principled approach to
design strategies against infinite memory opponents. These
results, along with their algorithmic interpretation, are es-
pecially interesting for system designers that do not have
full control of the agents, but whose objective is still some
desired system behaviour. Specifically, this could serve as
a stepping stone in constructing clever leader agents to be
deployed in multiagent learning systems to help the system
converge to the designer’s preferred equilibrium points. In
common interest settings, such an agent could serve as a
leader, solving coordination problems. In opposed interest
settings, they could find the best way to exploit their oppo-
nent’s deficiencies.
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